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The critical behavior near consolute points and plait points in mixtures and 
along lines connecting such points in the phase diagram belongs to the univer- 
sality class of gas-liquid transitions in pure liquids. We give a survey of the 
results for the temperature dependence of transport coefficients, thermal conduc- 
tivity, mass diffusion, and thermal-diffusion ratio, in mixtures within a non- 
asymptotic renormalization-group theory of critical dynamics. The observable 
critical behavior in some cases is nonuniversal and may be strongly concentration 
dependent. This is explained by different crossover temperatures in the singular 
Onsager coefficient of the order parameter and in the hydrodynamic transport 
coefficients. At the plait point the value of (ac/aa)ea determines the crossover to 
the asymptotic behavior in the transport coefficients, and its smallness explains 
the situation in 3He-4He mixtures. We also consider ionic solutions, where 
long-range forces may be present. The dynamical universality class in this case 
is different from that of mixtures with short-range interaction. As well as the 
"classical" static behavior for sufficient long-range interaction potentials, the 
dynamical critical behavior depends on the exponent of the power law for the 
spatial decrease in this interaction. This offers an additional possibility to 
determine this exponent by measuring the temperature dependence of the 
hydrodynamic transport coefficients. 

KEY WORDS: dynamic critical phenomena; 3He-4He mixtures; ionic solutions; 
mixture critical points; renormalization-group theory; transport properties. 

1. I N T R O D U C T I O N  

M i x t u r e s  o f  l iqu ids  s h o w  a large  va r i e ty  o f  d i f ferent  p h a s e  d i a g r a m s  [ 1 ] 

c o n t a i n i n g  l ines o f  cr i t ical  po in t s  c o n n e c t i n g  l i q u i d - v a p o r  cr i t ical  p o i n t s  
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(called plait points in the mixture), critical lines of consolute points ending 
in a pure liquid critical point, or lines leading from consolute points to 
plait points. All these phase transitions are expected to be in the same static 
and dynamic universality class [ 2, 3 ], namely, the universality class of the 
pure fluid [4]. That means in statics Ising model-like critical properties (a 
scalar order parameter) and in dynamics model H-like behavior (two non- 
linearily coupled equations for the order parameter and the transverse 
momentum density [4]). 

These expectations have been verified by a large amount of measure- 
ments in statics and dynamics; for a recent review see Refs. 5 and 6 and, 
especially, for the dynamics see Ref. 7. However, there have been prominent 
and striking exceptions: the dynamical critical behavior in 3He-4He mixtures 
at the plait point [ 8 ] and the static as well as dynamic critical behavior in 
ionic solutions [9]. 

The nonuniversal behavior of physical systems near a phase transition 
may have several reasons: (i) the systems are in fact not in the same univer- 
sality class, and (ii) the experimental region is outside the asymptotic 
critical region. In the second case one may observe either a crossover 
between the asymptotic behavior belonging to two different fixed points or 
a crossover from the background to the asymptotics. The crossover may lie 
in the experimental region if there is a slow transient. A prominent example 
of this case is realized in the critical dynamics at the superfluid transition 
in 4He [ 10], where one dynamical transient exponent is almost zero. For 
fluids no such small transient exponents appear [ 11 ] and one expects to 
observe the asymptotics in the region of t ~ 10-3. But even in absence of 
a slow transient, background terms may be dominant in physical quan- 
tities, since besides the development of the singular behavior governed by 
the flow of the dynamical parameters of the model, it is important how the 
singular part enters the quantity under consideration. This explaines the 
situation in the dynamics near the plait point of 3He-4He mixtures [ 12]. 
Although the singular Onsager coefficients (OCs) behave according to the 
asymptotic power law, the transport coefficients (TCs) do not show the 
asymptotic behavior, because the singular OC has a small amplitude com- 
pared to the noncritical OCs appearing in the TCs [ 13]. 

For the ionic fluids it seems to be the long-range Coulomb force which 
leads to a different (classical critical) behavior compared to nonionic 
fluids, but at the moment the situation is unclear and under discussion (for 
a recent review see Ref. 14). It is possible that either true asymptotic 
behavior or just a crossover to the pure fluid behavior with short-range 
interaction is observed. It may be that an effective interaction of strength 
1/r 3 +'~ dominates. This leads to classical exponents in statics [ 15] for cr < 
and to nonclassical behavior in the dynamics for or> 1 [16]. For the 1/r ~ 



Critical Transport Properties in Liquid Mixtures 1365 

interaction the power law behavior of the OCs is replaced by powers of 
logarithms because one is at the dynamical borderline dimension de = 2 + 
in d =  3. Near that border line dimension a small dynamical transient 
exponent appears. 

2. MIXTURES WITH SHORT-RANGE INTERACTION 

Transport properties at the liquid-vapor critical point in pure liquids 
are well understood within the renormalization-group theory (RNG) [4, 
l l ] and mode-coupling theory (MCT) [ 171. Two OCs behave singularly, 
leading to a thermal conductivity diverging like t -x~.v, t = ( T - T c ) / T c  and 
a shear viscosity diverging like t -x.v. Nonuniversal effects are weak but 
observable [5, 71. In mixtures, however, the situation is less uniform. One 
expects at the phase transition a finite thermal conductivity (measured at 
zero mass flow), a mass diffusion which goes to zero like t r-x~, a thermal- 
diffusion ratio diverging like t -y+x~.~, and a shear viscosity diverging like 
t - " : .  At the consolute point [5, 71 this has been observed (again, non- 
universal effects are weak but observable), but at the plait point the 
behavior depends on the chemical composition of the mixtures and the 
concentration. Recent calculations within RNG [ 12, 13] have resolved this 
problem and are asymptotically in agreement with the mode-coupling 
theoretical ansatz. The disagreement with experiments on the thermal 
conductivity for 3He-4He mixtures [ 8] with the theoretical predictions of 
[ i8, 191 is due to the use of the static theoretical expression for (dP/dT)v .c  
in disagreement with experiment and not due to a disagreement of the 
dynamical theoretical part [201. See also the recent mode-coupling calcula- 
tions of Luettmer-Strathmann and Sengers [21]. 

The main points of the theoretical calculation of the TCs are 
(i) identification of the order parameter, (ii) identification of the 
singular OCs, (iii) separation of genuine dynamic and static quantities, 
(iv) calculation of the TCs as functions of static quantities and the OCs, 
and (v) calculation of the critical dynamics within a nonasymptotic RNG 
procedure [ l01. 

Our starting point is the hydrodynamics of a mixture, which is 
described by the densities (per volume) of the conserved quantities such as 
entropy per volume s, mass density p of the mixture, mass density P3 of the 
second liquid, and momentum current density j. From hydrodynamics one 
has, for a mixture at rest ( j = 0 )  [22], 

T 0 s  = 0P--2 = - Vi (1 )  
0t - V ( q -  zli), cot 
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The mass current i and the total heat current q -  Ai are linear functions of 
the gradient of the temperature T and the chemical-potential difference ,4. 
In lowest order, one has 

i= - f l V T - e V A ,  q - d i =  - T V T - - J V J  (2) 

From Onsager symmetry one has fl = J/T. With Eq. (2), the hydrodynamic 
equations, Eq. (1), are 

N=-~v-~'+p v2A, OP3 Ot = fl V2T+ ~t V2A (3) 

The time development of the momentum density is determined by the 
linearized equation 

where q is the shear viscosity and ( the bulk viscosity. 
Equations (3) and (4) are the starting point of the mode-coupling 

theory, which assumes a similar behavior of the OCs 0q fl, ~ according to 
a Stokes-Einstein diffusion law [23 ]. The TCs read 

o ) 
P PT 

/~2T 
x---~,---  (5) 

aA T 

According to the assumptions about the singular behavior of the OCs and 
inclusion of background values of the OCs 1-24], one gets the critical 
behavior of the TCs. 

We follow renormalization-group theory in order to calculate the 
singular contributions in the OCs and the TCs. We shall see that the 
singularities enter differently depending on the choice of the order parameter. 
For generality we take the order parameter as linear combination of the 
entropy per mass cr = sip and mass concentration c = P3/P fluctuations with 
coefficients depending on the form of the critical line in the phase diagram. 

(7 
N~2-~=a,lyl+alzy2, N~2c=a21Y~+azzy2 (6) 
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The a o. are considered as functions of the thermodynamic fields temperature, 
pressure, and mean concentration 1-25 ]. They have to be taken from experi- 
ment, namely, the phase diagram of the mixture considered. The factor N ~'-, 
with N A Avogadro's number, is chosen for convenience to transform the 
Boltzmann constant to the general gas constant in the thermodynamic 
expressions. The limiting case of the plait point a H =a22 = 1, a~2 =a2~ =0, 
and the consolute point a H =a22=0, a~2=a2, = I, have been treated in 
Ref. 12, and we shall frequently refer to these cases. To obtain a Hamiltonian 
which is invariant under order parameter inversion (no third-order term), 
and in which the order parameter is decoupled in quadratic order from the 
secondary density, we define the order parameter ~bo and the second con- 
served density qo as 

~ 0 = y j - - b l ,  qo = y 2 - Q I ~ o  (7) 

in which b~ is a suitable static constant and 

1 fR Oc OT 

with 

Oc O 
(9) 

Neglecting the sound degrees of freedom [26], we restrict the expansion of 
the Landau-Ginzburg-Wilson Hamiltonian J/f to relevant terms only and 
include and the transverse part of the momentum density j. Then the 
Hamiltonian reads 

Standard calculations lead to the strong (t -r) and weak diverging (t - ' )  
susceptibilities, which expressed by thermodynamic derivatives are 

(~o~o)c Y2Rp 0 e,J 

=RT(ac  
(qoqo)c  l, Vp \ a / I ) e ~  (11) 

with Y= al ia22-  a12a21. The subscript c denotes the cummulant (AB)c = 
(AB)- - (A)(B) .  With Eq. (10) the critical behavior of Eq. (11) can be 
calculated within a perturbation expansion. Since in the following the static 
parts are taken directly from experiment, rather than from a theoretical 
calculation (see e.g., Ref, 27), we do not further treat the static model given 
by Eq. (10). 
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2.1. Dynamic Equations and Transport Coefficients 

Let us now turn to the dynamics, which is our main concern. Proceeding 
in the standard way we derive the dynamical equations by considering the 
Poisson brackets between the variables above and including irreversible 
terms compatible with the statics and the hydrodynamic equations Eqs. (3) 
and (4). We recover model H' in the notation of Ref. 4 for any linear com- 
bination of the entropy density and concentration fluctuation, Eq. (7). 

~to = s 6Jr  o ~63r ~ 6.r 
-~o + L,2V- ~qo - g(Vq~~ ~ + O4 (12) 

~to = f~,272 6~ o ~ 6~ 6J,g --~o+L22V- -~qo -- ~(Vqo) --~-- + Oq (13) 

--~--+g~- ~ o  +(Vq~ 6qoJ Oj (14) 

The Onsager coefficients s  s s and s are related to the fluctuating 
forces O; (i=~b, q, j) via Einstein relations. The mode-coupling is g =  
RT/NIA/z and Y- is the projector transversal to the direction of the wave- 
vector k. 

The limiting cases treated so far were the dynamics at the plait point, 
where a was taken as order parameter, and the dynamics at the consolute 
point, where c has been taken as order parameter. The independence of the 
model equations on the choice of the order parameter reflects the fact that 
all phase transitions on the critical line are in the same universality class 
and the OCs contain the same singularities. 

With Eqs. (12)-(14) in this model we have calculated the nonasymp- 
totic expressions for the TCs D, ~, and kr, which are valid in the crossover 
region from background behavior to the asymptotic critical behavior and 
which can be compared with the experimental data. The theoretical 
approach is in the same spirit as in the case of the superfluid transition in 
4He [10] and 3He-4He mixtures [28], although the reason for the non- 
asymptotic behavior is different as we see below. The renormalization is 
performed by absorbing the dimensional singularities in Z-factors [ 11 ] 
leading to renormalized parameters L~,, L~2, L,_2, Lj, and g. 

To proceed we introduce dynamical parameters for the model by the 
diffusion time ratio w and the mode-coupling f ,  

LI2 g w =, /L, ,  L,--------Z' (15) 
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The variation of the renormalized parameters under renormalization is 
described by the flow equations, which are in one loop-order, 

 w3, ( ,16, l ---~ = -~ ,.tf -, I ~ =  -- ~ f e -- -~ 241 ~,2 

where e = 4 - d  is the distance from the upper critical dimension above 
which the behavior is classical, which means the OCs are uncritical. The 
flow parameter / is related to the inverse correlation length, and in this way 
it is a measure for the distance to Tr In the asymptotic region the 
parameters reach their fixed-point values which determine the critical 
exponents; they are found as f *  =J'~,~a, the fixed-point value for the pure 
liquid [4] ,  and w*=  0. 

The OCs are then calculated as a function of the model parameters. 
We define renormalized OCs as (note that no static parts appear in these 
definitions) 

d _4__ f 3 " l') dl' L,I(/)  = L,~(I) exp J~ 1- 7- (17) 

t - 1  f '-(l ') ,  all' 
E~ : l 1--r--~(-/ ) l '  

(18) 

with the amplitudes in one-loop order, 

( 1 f'-(1),,,~ (19) 
Lj ( l )=Lj  1 3 6 1 - w - ( I ) ]  

The coefficients L,2 and L_,_, remain constant. The temperature dependence 
of the OCs follows from the flow equations, Eqs. (16), together with two 
nonuniversal initial conditions in the background. There is no slow transient 
(the dynamical transient exponents COl and co,,. are of O(I) [ 11 ], and there- 
fore it is sufficient to parameterize the OCs as (see Fig. 1 ) 

rql(t)=s /.12=Lp_ 
(20) 

Lj(t)=s /~22 = L22 

with the exponent x~=-]f  .2 and x, I = ~-,224j in one-loop order (one may 
include the two-loop terms of the pure fluid [4]) .  In this way crossover 
temperatures for the OCs x,.,_ ^ ~,,v ^ tL, , - L , l / L t l  and t~ =LflLj  may be defined. 
They are expected to be within the order of 10-2. All other OCs are unrenor- 
malized and enter the expressions of the TCs as background parameters. 

The next step is to identify the TCs by comparing the model equations 
with the hydrodynamic equations, Eqs. (3). This identification depends on 
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flow parameter 

Fig. 1. Solutions of the flow equations, Eqs. (16), and resulting model 
OC L of Eq. (17) (open circlesl, The dependence of[,  is fitted by the 
simple form corresponding to Eqs. (20). 

the choice of  the order  parameter .  The isothermal  diffusion constant  D, the 
thermal  conduct ivi ty in the absence of  mass  flow h', the thermal  diffusion 
ratio k r ,  and the shear viscosity q are 

D(t) = - -  

k r ( t )  

p {y_,a [ a,_,l 
RTYxo WLa,,+Tj [a,,L,:-(a2,-a,tQ,)L,,(t)] 

+ \aTJea [(a=-a):Q,)+(a:~-a,~Q))b] 
Pc" 

x [a,1 L22 - (a:, - a,, Q, ) L ,2 ]  } (21) 

K(t) y2pZ - ,  
p T  - T'-z=D(t) (Lt t ( / )  L22--Lb_) (22) 

1 {p W 
T a , , + ( a , 2 / b )  - T a ~ )  [ ( a 2 ' - a ' l Q ' ) L ' :  

ac 

q(t) = L~__~(~) (24) 
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with the static functions Xc=(OC/OZI)pT, a=R(Oc/Oa)ea, and b =  
(1/R)(Oa/Oc)er. Asymptotically we recover the temperature behavior of the 
TCs known from the consolute point and plait point D = D a F -'a", x = xr 
kT = kTa t-~'+'~', and ~1 = qat-""", where the a o. have to fulfill the condition 

a21 --al l  QI a,_z--al2Ql a or -- b (25) a2,_--al2Qi a,_l --all QI 

depending on the sign of the determinant of the coefficient matrix. 
At the plait point, where one has all =a_,2 = 1, ap.=a21 =0,  Y= 1, 

Qt = a ,  Eqs. (21)-(23) reduce to 

D(t) = R---~Z ~ (L22 + aZ/'.ll(t) + 2arq_,) (26) 

h( t) p2 -,  
pT T2zcD(t) (Ell(/) L22-- Zi2) (27) 

kT(t) 
T 

P ( E , , + a E . , ) . _ ( ~  
TaD(t) - - ~  ?,, 

(28) 

while at the consolute point, with a i r = a 2 2 = 0 ,  a l 2 = a _ , l = l ,  Y = - - 1 ,  
Ql =b,  Eqs. (21)-(23) reduce to 

D(t)-PL"(t)  a(t) Rp ( ~_,_ .~ kr(t) L,~ 
Rrz-------~' p r = T  /~2_, El,(t)  j ,  --~ -RzcE~( t )  (29) 

It must be remarked that in Refs. 12 and 16 rescaled OCs L U were used (x 
should be replaced by K/pT there) and we use here a dimensionless entropy 
density aiR. Comparing Eqs. (26)-(28) with Eq. (29) makes clear why the 
observable behavior of the TCs at the consolute point is so much different 
from the plait point. At the consolute point the mass diffusion is directly 
proportional to the critical OC and therefore its critical behavior is not 
masked by other noncritical OCs. A nonasymptotic behavior would be 
purely the result of the flow equations, which may not have reached the 
fixed point values (small tt,,). However the mass diffusion at the plait point 
contains the singular OC, multiplied by (Oc/Oa)~a, besides the nonsingular 
OCs. Even if the flow has reached the fixed point values of the dynamical 
parameters and the OCs behave according to the asymptotic power law, 
one may not observe the true asymptotic behavior of the TCs depending 
on the relative strength of the singularity with respect to the nonsingular 
OCs. 
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2.2. Crossover Temperatures 

A straightforward application of the theory, using the flow equations 
for the comparison with experiment at the plait point, is not convenient at 
this stage for several reasons: (i) we have the theoretical uncertainties 
because of using the one-loop expressions only; (ii) apart from experimental 
uncertainties in static quantities, the coefficient a=R(Oc/Oa)e~ is not 
completely defined, because of the freedom in the definition of the entropy 
at the phase transition line (see also Ref. 20) (we do not need the explicit 
value of a but only its concentration dependence, however, going back to 
the model OCs the value of a has to be known); (iii) the dynamic background 
values [as initial parameters of the flow equations, Eqs. (16)] remain 
parameters of the theory anyway; and (iv) we do not want to use the 
viscosity data for the analysis of the TCs in Eqs. (21)-(23), because we did 
not introduce the "Kawasaki amplitude" for the plait point (see Ref. 13) 
and because we want to use a minimal number of experimental TCs (often 
only the thermal conductivity is the only available TC). Therefore, we take 
the nonasymptotic expressions for the OCs given by Eq. (20). In this way 
we may introduce amplitudes and crossover temperatures instead of the 
four adjustable dynamic parameters s  Ll~, L~2, and L22 in the TCs. We 
may write for the strongly diverging static susceptibility 

Xc =Xo( I + (t/tz) -Y) (30) 

and we assume that the static parameters ;(0 and t x are known from 
experiment [ 8 ]. 

The new independent parameters are tD, tK, D 0, x o. 

1 + (t/tD)-x~.v 
D =Do (31) 

1 + ( t / t z ) -r  

The thermal conductivity 

1 + (t/tK)-xz~ 
x = x o 1 + ( t / tD)-~v  (32) 

and the thermal-diffusion ratio 

l + ( t / t x ) - r  
k r / T = k r / T l + ( t / t D ) - ~ z v + A ( l + ( t / t o p ) - ~ )  (33) 

where/~r can be expressed by the parameters in D and x and a weak diverging 
static susceptibility enters. No new dynamical crossover temperature is 
defined for kr. The introduced amplitudes and crossover temperatures are 
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found by comparing Eqs. (31)-(33) with Eqs. (21-(23). We discuss only the 
two limiting cases of the plait point and consolute point (t,r is the same in 
all cases). At the plait point we have 

a2/~ 1 I 
t~  ~ - < ''~ ~ (34) 

L22+a2Lll +2aLl2  "L, 

t~'l I L22 t ~ _  > ,x~ (35) 
LllL22_L12 "LN 

Since the matrix of the OCs is positive definite, one can prove that in any 
case to < t,:. 

At the consolute point we have 

t x a ,  _ ,x~v (36) D -- ~LII 

Llt L22 x~ > ,x~ (37) 
tK - L l l L 2 2  _ L 2 2  ~ 

We see that the small crossover temperature in the case of the plait point 
is caused by the smallness of the static amplitude a and therefore is not 
related to the usual correction terms in the OCs. Even when the singular 
OC El~ behaves according to the asymptotic power law, this would not be 
seen in the experimental accessible region if a is sufficiently small (small tD). 

The vanishing of a is expected to govern the crossover from the plait- 
point behavior to the pure-fluid behavior in the mass diffusion and, more 
importantly, in the thermal conductivity. In this limit X ~  0 (X is the mean 
molar concentration; corresponding behavior holds in the limit X---, 1), the 
values of the involved quantities are 

Zc ~ X, tzY ~ X, a ~ X, L22 "-~ X, Ll2 ~ X (38) 

Then the parameters have the limiting values 

L l l  L22 
tz, ~ O, t~Li---~l, Do--*--,Xo x~ ~ L l lpT  (39) 

and x diverges at Tc as 

x = ~ t - x %  ~ = s  (40) 

The surprising fact is that even in mixtures near 50 % 3He, in 4He where 
a should be largest, tn is so small that it lies outside the experimental 
accessible region and one observes pure liquid-like behavior in the thermal 

840/16/6-5 
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concentrations of He Fig. 2. (a) Mass diffusion as a function of temperature for different molar 3 
in 4He. Data from Ref. 30; lines are fits with Eq. (31 ). (b) Thermal conductivity as a function of 
temperature for different molar concentrations. Data from Ref. 31 for mixtures and Ref. 32 for pure 
fluids; lines are fits with Eq. (32). (c) Thermal diffusion ratio as a function of temperature for 
different molar concentrations. Data from Ref. 29; lines are fits with Eq. (33) (from Ref. 12). 
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Fig. 3. Thermal  conductivity in the background x o and at Tr in the 
mixtures according to Eq. (41) with the values obtained from the fits shown 
in Fig. 2. For the concentration X =  0.95 we have taken t~ and xo from X =  1. 

conductivity [29].  This is seen from a fit of the experimental data (Fig. 2), 
where the extrapolation of x demonstrates the crossover to a finite value at 
Tc for the mixtures. The value of x at T c can be expressed by the fit 
parameters 

Rp2L2: (t y,v 
x r  a2 =h'o (41) 

\ t o /  

and, according to the concentration dependence from above, should 
diverge as X - '  for X ~  0. This is compatible with our fits (see Fig. 3). 

3. FLUIDS W ITH LONG-RANGE INTERACTION 

Measurements of statics in ionic solutions near the consolute point or 
near the critical point in metallic fluids showed classical critical behavior 
[33-37]. It is suspected that the Coulomb interaction (to some extent 
screened) or other molecular multipol interactions lead to an effective inter- 
action of long range of the type r - 3 - ~  with 0 < a < 2 (the exponent a may 
not be confused with the entropy density), but the specific type of the effec- 
tive interaction remains unclear. Recently, light-scattering measurements of 
dynamical quantities such as the mass diffusion at the consolute point have 
been performed 1-35-37]. Therefore it is of interest to study the dynamics 
for such systems 1-16]. We shall see that even if the statics is classical, the 
dynamics may be nonclassical. Because of the interaction the critical 
behavior belongs to a new universality class. 
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We consider now, instead of Eq. (10), the Hamiltonian (in Fourier 
space) [15] 

]F= f dak ~ {(r + k~)r162 +a,tqkq_ k + aiM_,} 

u 
(42) 

where the long-range interaction leads to the k" instead of a k 2 term for the 
short-range interaction. It has been shown in'Ref. 15 that in the case of 
0 < a <  1.5, the static exponents are "classical," y =  1, fl=�89 e = 0 ,  but 
v = 1/a and q = 2 -  a, fulfilling the usual scaling laws. Therefore measure- 
ments of v or r/can give information about the parameter a governing the 
range of the effective interaction. 

Let us now turn to the dynamics, which is our main concern. The 
model equations are the same as Eqs. (12)-(14) if we consider the mixture. 
For the pure fluid Eq. (13) for qo and the respective terms in the other 
equations would be absent. 

A dimensional analysis shows that the dynamical critical dimension 
above which the mode-coupling terms are irrelevant is given by 

d ~ y n a m i c = 2 + a  (43) 

This may be compared with d static = 2a, which is always below the dynami- 
cal critical dimension. Therefore in the region 1 < a < 1.5 the statics are 
"classical," whereas the dynamics show nonclassical critical behavior. For 
0 < a < 1 the OCs remain noncritical. 

Proceeding as in Section 2, the flow equations in one-loop order at 
d = 3 are 

dw l -~ = a(a) I~f 2 1 f2  f2  l~l= 2 f ( a - l - b ( a )  -c(a) l__-7~v2 ) (44) 

with a(a), b(a), c(a) found in Ref. 16. The fixed-point values are w * = 0  
and f . z  ~ ( a -  1 ). The OCs follow, then, again in one-loop order, 

I2,,,) Lll(l)=Lll (1- -  1 2 

a ( 2 4 + 4 6 a +  17a2+a  3) f2(/_)) Lj(l) Lj 1 
24(2+a)  2 ( 4 + a )  2 ~ J l  

(45) 

(46) 
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The temperature dependence of the OCs is given by the flow equations, 
Eqs. (16), together with suitable initial conditions in the background. 
A slow transient may appear near ~ = 1 [ the dynamical transient exponents 
co r and co,,. are now O ( t r - 1  )], nevertheless, we may simply parameterize 
the OCs as in Eq. (20). The corresponding exponents in one-loop order 
are found to be (remember e = 2 + c r -d ;  thus for d =  3 we have simply 
~ = a - l )  

12(4+a)  ( a - l ) ,  
xa = 48 + 12~ + ~2 

~2 
, (G--  1) (47) 

x,~-  48 + 12a + a- 

They fulfill in d =  3 the exact relation 

x ~ + x , l  = a -  1 (48) 

However, the crossover temperatures for the OCs t ' - ~ v - f  /L~ and LII - -  a" I 1 1 
r " , " = s  may now become smaller than 10 -2. In fact for a =  1 the Lj 
temperature dependence of the TCs is given by powers of logarithms. For 
cr = 1 the fixed point value for the mode-coupling is zero but is reached 
only logarithmically. For w(1)=0  Eq. (44) fo r f ( l )  reduces to 

i d f  31 
= 90 f ( l )3  (49) 

with the solution 

Q T  ) - 1/2 1 31 In(l) (50) 
f ( l )  = 2( 1 ) - 4--5 

Therefore from 

/,11(l) = Lil(l)  exp f 2 ( l ' )  -[;- 

Lj(I) =Lj(1) exp f Z ( l ' )  l-- 7- 

(51) 

with the amplitudes given in Eqs. (45) and (46) we arrive at 

/Z,,(t) ~ Iln tl 2/3, Ej(t) ~ Iln tl ,/9o (52) 

An important quantity in light-scattering experiments is the Kawasaki 
amplitude [38] in d--3,  which is defined by the following ratio involving 
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Fig. 4. The ratio of the nonasymptotic Kawasaki amplitude for the long- 
range interacting liquid to the asymptotic value of this amplitude for the 
short-range interacting liquid as a function of the flow parameter / for 
different values of a (from Ref. 16). 

the thermal diffusion Dn = D r  = x/g for the pure fluid or the mass diffusion 
Dn = D for the mixture at the consolute point and the shear viscosity 

DR(t) #(t) ~(t) 
~t~(t) = (53) 

k B T  

It reaches a universal value for T--* To, whose value relative to the value 
in liquids with short-range interaction reads 

~ *  1 
- - r ( a )  (54) 

~ *  a - 1  

In the range 2 >/a >/1 r(a) decreases from r ( 2 ) =  1 only by 4 % and there- 
fore one can use r ( a ) =  1. The amplitude is formally divergent when one 
approaches the dynamical critical dimension. This is an artifact of the 
asymptotic expression one has to consider in the case of a small fixed-point 
value of f and, because of small slow transients, the nonasymptotic  
expression of the amplitude [10].  The dependence of this nonasymptotic 
amplitude on a and on the flow parameter  l is shown in Fig. 2 for the pure 
liquid [ w ( / ) - 0  in Eq. (18)] in the lowest approximation 

~ ( l )  24 
~ .  - 19f(/) 2 (55) 
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